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Last time, we found for a free particle:

Ψ(x, t)=A e
−

i

~
R
, where R=

∫

0

t

dt′L(x, ẋ), ẋ=
dx

dt

ψ(x) =A e
−

i

~
S
, where S=

∫

xi n i t

xfi n a l

dx′ p(x′)

S and R are classical actions. The expressions for S and R are valid in a general setting. Vari-
ational principles: δR= 0 for a given t, δS = 0 for given energy. These variational principles give
the classical path.

Let us now consider a particle bound in a potential, still in one dimension.

[

−
~

2m

∂2

∂x2
+V (x)

]

ψ(x)=Eψ(x)

First, we want to rewrite this so that the classical momentum p(x) appears.

H =
p2

2m
+V (x)=E, p→

~

i

∂

∂x

p(x)= 2m (E −V (x))
√

~
2 d2ψ

dx2
+ p2(x) ψ(x)= 0

Ansatz:

ψ(x)=A e
i

~
S(x)

What will the action S(x) be?

dψ

dx
=

i

~
S ′(x) ψ(x)

d2ψ

dx2
=−

[S ′(x)]2

~2
ψ(x)+

i

~
S ′′(x) ψ(x)=

[

−
[S ′(x)]

2

~2
+

i

~
S ′′(x)

]

ψ(x)

Looks complicated. We can’t just look at this and see if S is a classical action. When ~ → 0 we
expect classical results. So we expand S in powers of ~:

S(x)=S0(x)+ ~S1(x) + ~2S2(x)+O(~3)

S1 and S2 will be just quantum mechanical corrections to S0. We find:

[

−
[

S0
′(x)

]2
+ p2(x) +

(

− 2S0
′ S1

′ + iS0
′′
)

~ +
(

− 2S0
′S2

′ −
(

S1
′
)2

+ iS1
′′
)

~
2 +O(~3)

]

ψ(x) =0
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To order ~
0:

S0
′ =± p(x)

S0 =±

∫ x

dx′ p(x′)

This is just the classical action, the Maupertuis action.

To order ~
1:

S1
′ =

iS0
′′

2S0
′ =

i

2

d

dx
log |S0

′|

S1(x)=
i

2
log|S0

′(x)|=
i

2
log|p(x)|

If you want an additive constant there, just add it in. It will become a normalisation factor in
the end:

ψ(x) =
A

|p(x)|
√ exp

(

±
i

~

∫ x

dx′ p(x′)

)

WKB wavefunction.

Borel-resummation

f(x) =
∑

l

clx
l

l! =

∫

0

∞

dt tl e−t

B(x)=
∑

l

cl
l!
xl

f(x)=
∑

l

cl
l!
xl

∫

0

∞

dt tl e−t1∗ ∫

0

∞

dt e−t
∑

l

(x t)
l

l!
cl =

∫

0

∞

dt B(x t)

* Not really a legitimate step, mathematically.

Counterexample: f(x)= exp(− 1/x). Expanding about x= 0 gives us cl =0 ∀l.

We think of V (x) as the potential for the harmonic oscillator in these examples.

E <V (x):

ψ(x)=
1

|p(x)|
√

(

e
1

~

∫

x

dx′|p(x′)|
+e

−
1

~

∫

x

dx′|p(x′)|

)

Exponentially growing solution is unphysical. Note that there is an undetermined constant
hidden in the indefinite integral.
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E >V (x):

ψ(x)=
1

p(x)
√

[

A+ e
+

i

~

∫

x0

x

dx′ p(x′)
+A− e

−
i

~

∫

x0

x

dx′ p(x′)

]

Figure 1. There is a problem at p(x) = 0. We have turning points. There, we will find that the quantum

mechanical phase makes a jump. The green curve is the WKB approximation, which is close to the exact

solution (blue) away from the turning points. The shaded red area is the classically forbidden region.

Figure 2. We approximate V (x) at the turning point with its linearisation...
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Figure 3. ... and calculate an exact wavefunction (blue) for the linearised potential, and use this inter-

mediate wavefunction to patch the WKB approximations (green) in the different regions.

V (x)=E −F · (x− a)

1. Classical motion in the vicinity of the turning point a.

p(x)=± 2m (E −V (x))
√

=± 2mF · (x− a)
√
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a

x

p(x)

Figure 4. p(x) plot.

S0(x)=±

∫

a

x

dx′ p(x′)=±
2

3
(2mF )

1/2 · (x− a)
3/2

2. Exact solution of the linearised problem.

[

p̂2

2m
−F (x− a)

]

ψ(x)= a

Going to momentum representation:

[

p2

2m
−F (x̂ − a)

]

ϕ(p)= 0, x̂ = i ~
∂

∂p

ψ(x) =

∫

−∞

∞

dpϕ(p) eipx/~

ϕ(p)=C exp

(

−
i

~

(

p3

6mF
+ a p

))

ψ(x)=C

∫

−∞

∞

dp exp

(

−
i

~

(

p3

6mF
+ (a− x) p

))
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