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∫
(

a r2 + b r+ c+
d

r

)

e−r/l eikzrzcos θ r2sinθ dr dθ

Wick’s theorem, a.k.a. Cumulent expansion.

f †= (a1
†,� , ak

†
, a1,� , ak).

〈fifj〉=
∑

p

(ξ)p 〈fp1
fp2

〉� 〈fpk−1
fpk

〉

sum over distinct ordered pairs.

Example: 〈a1
†
a1〉= 〈a1

†
a〉

Example: 〈a1
†
a2
†
a2 a1〉= 〈a1

†
a1〉〈a2

†
a2〉 − 〈a1

†
a2〉〈a2

†
a1〉+ 〈a1

†
a2
†〉〈a2 a1〉.

Now, let’s get started with the weakly interacting Fermi gas. The Hamiltonian we are going to
be using is the good old second quantised Hamiltonian:

H =
∑

pσ

εp cpσ
†
cpσ +

∑

kpq
σσ ′

Uk cp+k,σ
†

cq−k,σ ′

†
cq,σ ′ cp,σ

σ is spin index, ↑ or ↓.

U(r). n(r)(n(r ′)− 1). n(r)n(r ′) = : crσ
† crσcr ′σ ′

†
cr ′σ ′: . Thus, this is the Hamiltonian with spin:

H =
∑

pσ

εp cpσ
†
cpσ +

∑

kpq
σσ ′

Uk cp+k,σ
†

cq−k,σ ′

†
cq,σ ′ cp,σ

Ground state ⇒Fermi surface.

Figure 1.

This is what the ground state looks like in the absence of an interaction. Let us take a look at
what an interaction can do. The interaction part of the Hamiltonian punches two holes in the
ground state.

|ψG〉=
∏

k,σk

εk<εT

ckσ
† |0〉

If I add a creation operator that is already present in this list, I get 0. So the only way to get
something from the interaction part, is if we create new particles outside the Fermi surface.

Figure 2.

The ground state is disturbed, and the electrons near the Fermi surface do something. For reas-
onably small k we are near the Fermi surface.
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The potential as it was written here, is just as intractable as the boson case. It took until 1960
before someone realized what to do with this. It took 30 years to develop methods to deal with
this.

The Colomb potential is repulsive. An effective attractive potential is induced in a lattice. [A lot
of handwaving.] You can get excitations of negative energy. The Fermi surface is unstable.

crσ
†
cr ′σ ′

†
cr ′σ ′crσ.

Grouping. Hartree approximation. . ,––, . No superconductivity.

Fock approximation. . ,––.––,

Anomalous 〈crσ
†
cr ′σ ′

† 〉〈cr ′σ ′crσ〉.

〈crσ
† cr ′σ ′

† 〉 Under gauge transformations, what happens? crσ
† → eiϕcrσ

† . This expectation value
violates gauge invariance. It does not allow a definite number of particles.

∆= 〈cp+k,↑
†

cq−k,↓
† 〉

σ=− σ ′⇒ no spin polarization. p+ k=− (q− k)⇒ translational invariance.

∆p = 〈cp↑
†
c−p↓
† 〉� 0

H ≈
∑

p

εpcpσ
†
cpσ +

∑

pq

Up−q





(

cp+k,σ
†

cq−k,σ
† −〈c†c†〉

)�
small

+ 〈c†c†〉





×

[

(cqσ ′cpσ −〈cc〉)�
small

+ 〈cc〉

]

H ≈
∑

p

εpcpσ
†
cpσ +

∑

pqk

(

−〈c†c†〉〈cc〉
)

+
∑

pq

Up−q

(

〈cp↑
†
c−p↓
† 〉cq↓c−q↑+ 〈cq↓c−q↑〉 cp↑

†
cp↓
†

)

This is called the BCS Hamiltonian.

HBCS =
∑

p

εpcpσ
†
cpσ +

∑

p

(

∆p cp↑
†
c−p↓
† + cc

)

+ const, ∆p=
∑

q

〈cq↑
†
c−q↓
† 〉Up−q

εp = p22m− µ with chemical poetential.

H =
∑

p

cp↑ c−p↓
†

cp↑
†

εp ∆p
c−p↓ ∆p − εp

=
∑

p

fα
†hαβfβ

Energy eigenvalues.

(εp −Ep)(− εp −Ep)= ∆p2

Ep
2 =∆p2 + εp

2

Ep =± εp
2 +∆p2

√

2



Figure 3. Gap at the Fermi surface

cp↑=up ĉp↑
† + vp c−p↓

c−p↓=− vp cp
† + up c−p↓

h=U † hU , U =

(

u v

− v u

)

(u, v):

(

εp −Ep ∆p
∆p − εp −Ep

)(

u

v

)

= 0

(u, v) =
(∆p, Ep − εp)

(Ep − εp)
2 + ∆p2

√

〈cp↑
†
c−p↓〉= 〈 − ĉp↑upcp↑ vp + ��

gives
zero

〉=− upvp〈ĉp↑
†
ĉp↑〉=− upvp =

−∆p(Ep − εp)

(Ep − εp)
2 +∆p2

=

=
−∆p(Ep − εp)

Ep
2− 2 εpEp + ∆p2 + εp2

=
−∆p(Ep − εp)

Ep(Ep − εp)

〈cp↑
†
c−p↓
† 〉=−

∆p

Ep

∆p=−
∑

q

(Up−q)
∆q

2Eq

BCS self-consistent equation.

Eq = εp
2 + ∆p2

√

Assume scattering with isa δ-function. Up =U0.

∆=
∑

q

−
U0∆

2 εp
2 + ∆2

√

1

U0
=−

∑

ε

1

2 εp
2 +∆2

√

Tinkham, introduction to superconductivity.
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