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New lecturer: Stellan Östlund.

The intent of this course is that you get an overview of more advanced methods in quantum
mechanics. It is a bit of an overview, we can’t get as deep into stuff as we would like.

At this point Sakurai will not be of much use. What we are going to discuss today and the next
few lectures, is multiparticle physics and “second quantisation”.

There are two fundamental types of particle: Bosons – interactions ⇒ superfluid. Fermions –
interactions ⇒ superconductor. This is macroscopic phenomena that must be understood using
quantum mechanics. We will try to treat these without introducing too much mathematical
formalism.

Multiparticle systems

We have N particles, where each particle can be in one of several states. We label the states by
α: |α1, � , αN) = |α1〉 ⊗ |α2〉 ⊗ � ⊗ |αN 〉. We have put a parenthesis on the right: |α1, � , αn),
instead of an angle bracket as in |α1〉, because of some normalisation problems.

ψα1,� ,αN
(r1,� , rN) = (r1,� , rN |α1,� , αN)

Normalisation:
∑

α1,� ,αN

|α1,� , αN)(α1,� , αN |=1

Identical particles, which are fermions:

|α1, α2,� , αN)= (− 1) |α2, α1, α3,� , αN)

Identical particles, which are bosons:

|α1, α2,� , αN)= (+ 1) |α2, α1, α3,� , αN)

(− 1)P =

{

− 1 if P is an odd permutation
+1 if P is even

ξP : ξ=1 for bosons, =− 1 for fermions

|α1,� , αn)= (ξ)
P |αp1

, αp2
,� , αpN

)

A permutation (1, 2, 3, 4) → (4, 1, 2, 3) — How many simple exchanges are needed to get from
one to the other? It is always either odd or even, so that’s what we mean by an odd or even
permutation.

Definition:

|α1,� , αN 〉=
1

N ! Π(nα!)
√

∑

P

ξP |αp1
,� , αpN

)

Occupation number of the states
∑

α

nα =N

nα = degeneracy of all states α.

1



Fermion: example: 2 fermions in 2 different states.

|α1, α2〉=
1

2
√ ( |α1, α2)− |α2, α1) )

Let us check the normalisation:

〈α1, α2|α1, α2〉=
1

2
( (α1, α2| − (α2, α1| )( |α1, α2)− |α2, α1) )= 1

Why do we do this in the first place? We want to make sure that the state |α1, � , αN 〉 is inher-
ently antisymmetric. For fermions nα =1: there can only be one fermion in each state.

N = 3, bosons. We are going to look at |α1, α1, α2〉

|α1, α1, α2〉=
2!

3!× 2!
√ ( |α1, α1, α2) + |α1, α2, α1)+ |α2, α1, α1) )

The 2! in the numerator comes from the fact that we only write down three terms: the original
formula would have us write down six terms, but interchanging α1 and α1 we get the same thing
again.

|α1, α1, α2〉=
1

3
√ ( |α1, α1, α2)+ |α1, α2, α1)+ |α2, α1, α1) )

This is properly normalised.

Distinguishable particles. Say that we have the states α1, α1, α2 that the distinguishable
particles can occupy. Specifying that two particles go into α1 and one goes into α2 completely
specifies the state.

We have red, blue and green:

r 1, 2
b 1, 2
g 1, 2

23

if we don’t specify how many particles are in each state.

Fermions:

ψα1,� ,αN
(r1,� , rN) =

1

N !
√

∑

ξP 〈r1|αp1
〉〈r2|αp2

〉� 〈rN |αpN
〉

ψα1,� ,αN
(r1,� , rN)=

1

N !
√ det









ψα1
(r1) ψα1

(r2) � ψα1
(rN)

ψα2
(r1) � ψα2

(rN)
 

ψαN

(r1) ψaN
(r2) � ψαN

(rN)









This is the Slater determinant.

For bosons:

=
1

N !
√ Perm

The definition of the permanent of A differs from that of the determinant of A in that the sig-
natures of the permutations are not taken into account:

Perm
(

a b

c d

)

= a d+ b c, det
(

a b

c d

)

= a d− b c

|α1, α1, α2〉= |α1, α2, α1〉
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We are going to the particle number representation: |2α1
, 1α2

〉. This is exactly equivalent to the
above. In general: |nα1

, nα2
,� , nαk

〉.

|nα1
, nα2

,� , nαk
〉= |a1,� , a1�

nα1

, α2,� , α2�
nα2

,� 〉

The particle number representation

|nα1
, nα2

,� , nαk
〉 Bosons

|1α1
,� , 1αN

〉 Fermions

|nα1
, nα2

,� , nαk
〉= |nα2

, nα1
, nα3

,� , nαk
〉 Bosons

|1α1
, 1α2

,� 〉=− 1 |1α2
1α1

1α3
,� 〉 Fermions

[“It is correct by definition”]

Now we are going to introduce the Fock-space. It is a Hilbert space that is not confined to a
fixed number of particles:

F =H0⊕H1⊕H2⊕� ⊕H∞

Ex: 1-sate, ε. Fermions. We can have zero particles in the state: |0〉. |1ε〉. The Fock-space of one
state is two dimensional:

(

0
1ε

)

If we had two states, what is the Fock-space then?









0
1ε1

1ε2

1ε1
1ε2









=

(

0
1ε1

)

⊗
(

0
1ε2

)

F =Fε1
⊗Fε2

Let us see what the Fock-space looks like for bosons:

1-state:

H0: |0〉, H1: |1ε〉, H2: |2ε〉, ..., Hn: |nε〉, ...

The Fock-space is infinite dimensional.

2-states:

H0: |0〉, H1: |1ε1
〉, |1ε2

〉, H2: |2ε1
〉, |2ε2

〉, |1ε1
, 1ε2

〉, ...

=Fε1
⊗Fε2

Creation and annihilation operators

“ aλ
† |nα1

,� , nλ,� , nαk
〉∝ |nα,� , (nλ + 1),� , nαk

〉 ”

aα2

† |nα1
, nα2

, nα3
〉 ∝ |nα1

, (nα2
+ 1), nα3

〉
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We are going to manipulate only the leftmost element. Other elements can be obtained from
there by permutations. More precisely:

aλ
† |nλ, n2,� , nk〉= |nλ + ξ |

√

|nλ+1, n2,� , nk〉

αλ|nλ, n2,�nk〉= nλ

√ |nλ − 1, n2,� , nk〉

aλ
† |nλ〉= nλ + 1

√
|nλ + 1〉

aλ|nλ〉= nλ

√ |nλ − 1〉

[aλ, aλ
†] = 1

nλ = aλ
†
a
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