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Sakurai, Chapter 7, Scattering.

Relativistic quantum mechanics (Peskin & Schroeder, Introduction to Quantum Field Theory).

Scattering is a fancy word for “collision”. We want to calculate the cross section. So what is a
cross section?

A classical example: You have a certain flow, of air for instance. You have a flux: the number of
particles through a certain area per time: Φ = #part/(area× time).

N = Φ ·A · t, [Φ] = cm−2 · s−1

Suppose there is a bottle immersed in the flux. The number of particles that hit the bottle in
unit time Ṅhits = Φ σ, where σ is a number with dimension of area. σ here, is the geometrical
cross section. The concept of cross section generalises to more or less anything. You just have to
generalise what you mean by “hit”.

An “event ” is something that happens. A+B→C1 +� +Cn. Is X produced by this reaction, if
yes, we call that an event. A+B→A+B. Is particle A going to hit my detector, that takes up
a certain solid angle? That is an event. These events are all proportional to the flux. The pro-
portionality constant is the cross section for that event.

LHC, colliders: Ṅ = L · σ, where L is called the luminosity (and is... the flux). σ is the total
cross section.

Differential cross section Suppose I have particle A and particle B colliding. I take a tiny
little detector, with a small solid angle ∆Ω.

∆Ṅ =Φ ∆Ω ·
dσ

dΩ�
=∆σ

The number of events has to be proportional to the flux, and also, to first approximation and
exactly in the infinitesimal approximation, to the small solid angle ∆Ω. dσ/dΩ becomes a kind
of cross section density.

[“What date is it? Is it Tuesday? My watch says Monday. It is a wonder that I didn’t miss the
class” — Gabriele Ferretti]

The Lippmann-Schwinger Equation is an exact (but implicit [“If I say it is useless, my col-
leagues get upset”]) equation for σ. Approximations will give us an explicit equation: Born
approximation, Eikonal approximation, Partial wave approximation.

Let us consider scattering of a particle from a potential. If I can solve this problem, I can also
solve the problem of the elastic scattering of two particles.

H =
pA

2

2mA
+

pB
2

2mB
+V (xA −xB)

To get the problem of scattering of a particle from a potential, I go to the centre of mass frame.
r = xA − xB, R = (mA xA + mB xB)/(mA + mB). For r we have a momentum p and reduced
mass m = mAmB/(mA + mB), for R we get a momentum P and the Hamiltonian of a free
particle, which we ignore. Thus H = p2/2m+V (r).
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We start in the far past, t = − ∞, and consider a wave packet moving towards the (localised)
potential V . At the end of the day, t= + ∞, I will have a really messy situation with the wave-
function spread all over the place. We ask the question: How will the wave-function look at t =
+∞.

There is an extra embedded complication. Wave packets are hell. We are going to do something
that is physically wrong, and consider plane waves. If we know what happens with all the plane
waves, we know everything about the wave packets too.

The plane wave is everywhere (including where it shouldn’t be, behind the potential). We now
turn to the Lippmann-Schwinger theory. We are going to do perturbation theory. (Here we are
in a continuum, so we can’t study how energy levels change under influence of a perturbing
potential, since there are no energy levels. Therefore, we keep the energy fixed, and look at how
the wave function changes.)

H =H0 +V (x)

where H0 = p2/2m. (We set ~ = 1 throughout the course. c = 1 too, but since we are not doing
relativity that doesn’t matter much here.)

H0 =
p2

2m
=−

∇2

2m

That is our free Hamiltonian.

H0|p〉=
p2

2m
|p〉

〈x|p〉= φp(x)=
1

(2π)3/2
exp(i p ·x)

This is the free equation. We want to find the solution to H |ψ〉 = E |ψ〉, with the same E.
There is no meaning in perturbing the energy, but |ψ〉 will be perturbed, |ψ〉= |p〉+ something.
For that something the Lippmann-Schwinger equation gives an exact equation... that depends
on |ψ〉.

|ψ〉= |p〉+
1

E −H0
V |ψ〉

This is nonsense! Why is this nonsense? It is not nonsense because we take the inverse of a dif-
ferential operator. If E did not belong to the spectrum of H0 this would be perfectly fine. But
we have (E −H0)|ψ〉=0. We will fix this in a moment. First, act with (E −H0) on both sides:

(E −H0)|ψ〉= (E −H0) |p〉�
=0 by construction

+(E −H0)
1

E −H0
V |ψ〉 ⇒ H |ψ〉=E |ψ〉

The problem is that E belongs to the spectrum. Let us take the energy a little bit of the real
line:

|ψ〉= |p〉+
1

E −H0 + i ε
V |ψ〉

It would not exactly cancel as above, when we act with (E −H0) from the left, but it works out
when we take the limit ε→ 0. There is an ambiguity: It could be + i ε or − iε, and they are dif-
ferent. We will do it with the plus, and the calculation will show what would go wrong if we
were to choose the minus sign. [Sakurai: “This is known as the Lippmann-Schwinger equation”
and “The Lippmann-Schwinger equation is a ket equation independent of particular representa-
tions.” It seems to me, Christian, that Gabriele may mean something more general, or else, the
Lippmann-Schwinger equation in the coordinate representation that we now derive.]
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Let us now consider the same thing in the coordinate representation:

〈x|ψ〉= 〈x|p〉+ 〈x|
1

E −H0 + iε
V |ψ〉

〈x|ψ〉= ψ(x); 〈x|p〉=
1

(2 π)3/2
eip·x

The rightmost term looks horrible, but it is not. We separate the two operators, by introducing
a complete set of states, say, eigenstates of position:

〈x|
1

E −H0 + iε
V |ψ〉=

∫

d3x′ 〈x|
1

E −H0 + iε
|x′〉〈x′|V |ψ〉.

(Dirac is a notational genius)

〈x|
1

E −H0 + iε
|x′〉=2mGE(x,x′) = some function, that we will compute in a second.

〈x′|V |ψ〉=V (x′) ψ(x′)

GE(x,x′)=
1

2m
〈x|

1

E −H0 + iε
|x′〉

In the position representation, H0 = −
∇2

2 m
. It is far easier in the momentum representation,

H0 =
p2

2 m
. Let us put in a complete set of states:

GE(x,x′)=
1

2m

∫

d3q d3k 〈x|q〉〈q |
1

E −H0 + i ε
|k〉〈k|x′〉

〈x|q〉=
1

(2π)3/2
eix·q, 〈k|x′〉=

1

(2π)3/2
e−ik·x

〈q |
1

E −H0 + i ε
|k〉=

1

E −
k2

2 m
+ i ε

δ(3)(q −k)

GE(x,x′)=
1

2m

∫

d3q

(2π)3
· exp(i q · (x−x′)) ·

1
p2

2 m
−

q2

2 m
+ i ε

ε→ 0⇒ 2mε→ 0. We change the definition of ε as we go along:

GE(x,x′)=

∫

d3q

(2π)3
exp(i q · (x−x′)) ·

1

p2− q2 + i ε
=

Now, we go to polar coordinates in q. [Methinks this is spherical coordinates (q, θ, ϕ), where the
direction x −x′ taken as the zenith, i.e., the direction of reference for the zenith angle θ, with ϕ

being the azimuthal angle as usual. At first, I thougth Gabriele was making a sign error here.
The volume element in spherical coordinates is dV = q2 sin θdqdθdϕ, and with d(cos θ) = −
sin θdθ we would get dV = − q2 dq d(cos θ)dϕ. But we integrate cos θ from − 1 to 1, corres-
ponding to θ from π to 0, rather than 0 to π as we would normally do. The interchange of the
integration limits changes the sign, giving dV = q2 dq d(cos θ)dϕ.]

=

∫

q2 · dq · d(cos θ) · dϕ
(2π3)

eiq |x−x′|cos θ 1

p2− q2 + iε
=
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Integrating over ϕ gives a factor 2π:

=

∫

0

∞ q2 dq

(2π)2
·

1

i q |x−x′|

(

eiq |x−x′|− e−iq |x−x′|
)�

=
∫

−1

1 du exp(iq |x−x′|u)

·
1

p2− q2 + i ε
=

We change the integration limit, so that we only need one term in the exponential factor.

=
1

4π2
·

1

i |x−x′|

∫

−∞

+∞

q dq eiq |x−x′| ·
1

p2− q2 + iε
=

=
1

4π2
·

i

|x−x′|

∫

−∞

+∞

qdq eiq |x−x′| ·
1

q2− p2− iε
=

We will use the residue theorem. We think of the integration variable q as belonging to the com-
plex plane, and we want to integrate it from −∞ to +∞. If it weren’t for the ε, we would have
two poles at q=± p. Now we have q2− p2− iε= (q − p− iε′)(q+ p+ iε′) = q2− p2 + i ε′ (q − p)−

i ε′(q+ p)+ ε′
2
≃ q2− p2− 2 i ε′ p.

I have to close the integration contour upstairs, enclosing the pole p+ iε and leaving out − p −
iε; otherwise we would have a divergence.

=
1

4π2
·

i

|x−x′|
· 2 π i · p ·

eip |x−x′|

2 p
=−

eip |x−x′|

4 π |x−x′|
=

1

2m
〈x|

1

E −H0 + iε
|x′〉

[For those of you who, like me, have forgotten the details of the residue theorem, here it is:
“Suppose that f is analytic on a simply-connected domain D except for a finite number of isol-
ated singularities at points z1, � , zN of D. Let γ be a piecewise smooth positively oriented
simple closed curve in D that does not pass through any of the points z1,� , zn. Then

∫

γ

f(z)dz=2π i
∑

zk inside γ

Res(f ; zk)

where the sum is taken over all those singularities zk of f that lie inside γ.” (Stephen D. Fisher,
Complex Variables , second edition, Dover 1999.) And how to calculate residues: “Suppose that F
and G are analytic functions on the disc {z: |z − z0| < r0} with G(z0) = 0 but G′(z0) � 0. Show
that Res(F /G; z0) = F (z0)/G

′(z0)” (The same book, example 4, chapter 2.) Here we would have
z0 = p + iε and G(q) = q2 − p2 − iε⇒ G′(q) = 2 q. We must have taken the limit ε→ 0 immedi-
ately after we applied the residue theorem, so that G′(z0)→G′(p)= 2p.]

Now we have the Lippmann-Schwinger equation in a very explicit form.

ψ(x) =
1

(2 π)3/2
eip·x − 2m

∫

dx′ eip |x−x′|

4π |x−x′|
V (x) ψ(x)

This is exact, but useless. One more step with this, to get to the cross section.

We had some V (x′), and we are interested in the behaviour of ψ(x) very far away. If this were
a nuclear physics experiment V � 0 for |x′| ∼ a few femtometres. In an atomic physics experi-
ment, we would have x′ on the order of Ångströms. So we make the approximation V � 0 for
|x′|≪ |x|, as the detector would be |x| ∼ a few metres away. We shall continue tomorrow.
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