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Tensors (continued). If there’s time, we’ll do groups too.

Tensor calculation rules.

1 addition, 2 outer multiplication, 3 contraction, 4 symmetrizations.

5. Quotient rule. (Important for showing that a given object is a tensor.)

Ex. Suppose you have (1, 0), C*, but you don’t know if C is a tensor or not. Then if you know
that the scalar product with (0, 1) tensor always gives a scalar, you conclude that C* is a tensor.

Proof:
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6. Kronecker symbol.
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can be regarded as a (1, 1) tensor field.
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This is therefore called an invariant tensor.

7. M is called metric, or riemannian, manifold, if there is an invariant local distance

ds? = g, () da* dz”

m

v

By the quotient rule g,,(z) is a (0, 2) tensor field and its inverse, g, defined by ¢"” g,, = ¢
A (2,0) tensor field. They are used as standard tensor for raising and lowering indices.
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Connection to F2 vector calculus course: There M was metric, dim = 3, coordinates assumed
orthogonal. There one wrote instead of dz*

dr:Z dehVéV:Z dz*t,

€, was unit basis vector, h, was scale factor, h, €, was tangent basis vector.

In general coordinates, are not orthogonal and one writes instead
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é, orthonormal basis vectors, 0, tangent basis vectors, e,*(z) vielbeins.
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8. Differentiation of a (p, ¢) field object, usually does not produce a (p, ¢ + 1) tensor. The
trouble is derivatives of the transformation matrix.

Example: (0, 1) tensor field A, (z).
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You have a tensor only if the first term always cancels. Important case: This happens for
0,A, — 0,A,. Since it is odd under transformation p <« v and since the unwanted term is even.
More generally, for the same reason, the totally antisymmetrized derivative of a totally antisym-
metric (0, ¢) tensor, is a (0, ¢+ 1) tensor.

Remark: In gravity theory the problem is handled by introducing (1, 2) field I',”,, not tensor,
called Riemann connection, and covariant derivative

D.VY=0,V'+T,", V"

defined such that D, V" is a tensor. Compare covariant derivative in Yang-Mills theory, (A4,)".
9. Tensor densities.

In gravity theory, action must be scalar.
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Requires that £ is a scalar density of weight w=1.

Example of scalar density: det g, where g is the metric tensor g,,.
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det(g) is a scalar densito of weight w=2.

det(g) is a scalar density of weight w=1.

In general one can work with objects which are (p, ¢) tensor densities of weight w.



Group theory
Definition of group: done.

Definition: A subset H C G of group G is called subgroup of G if it is a group under the same
composition law as G. a,b€ H=abc H,ec H,ac H=a"'c H.

Definition: A subgroup H C G is called an invariant subgroup iff:

heH,gcG = ghg'cH

(h conjugated by g).

Definition: g1, g2 € G are said to be conjugate to each other iff 3g € G: g1 = g go g~ '. Denoted
g1~ g2.

Note: Being conjugate is an equivalence relation; for

1) Transitivity: g1 ~ g2, g2~ g3= g1~ gs.
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2) Symmetry: g1~ g2 = g2~ g1-
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3) Relflexivity: g~ g.
1
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It gives rise to a partitioning of G into union of disjunct sets, equivalence classes, conjugacy
classes.

Example. SO(3) = group of all rotations (about origin) in R3. A g € SO(3) is specified by rota-
tion angle 0 < 0 < 7 and a direction 7. Two rotations R(n, 0), R(ni, 6) are conjugate if 0 =6¢’,
for there is always another rotation R that rotates 1’ to n. Then R R(n’,0')R~' = R(n,0') =
R(n,0) iff 0'=6.

Definition: a group G is called commutative or Albelian if all its elements commute, i.e. g1, g2 €
G = g1 92= g2 g1- For albelian groups each elemet is its own conjugacy class.

Number of elements in a group can be finite or infinite. Among infinite groups there is a nice
subclass, Lie groups, which are simultaneously smooth manifolds.



