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[This time only Swedish people turned up, so the lecture was, initialy, held in Swedish.]

Hamiltons ekvationer

Ej béttre for att 16sa ingenjorsproblem. Better for understanding general properties of mech-
anics.

Goal: Put time derivative terms in the action in a simple form.
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Better option: linearize the action in time derivatives.
A= [ atria.a) M)

Introduce the new variable v# = ¢". ¢* —v* =0 is implemented by Lagrange multiplier p,:
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solve for v and insert back in to the action.
~ A= [ dt (i~ Hp.q)

H(p,q)=(p,v" —L(q,v))|v=v(p,q)
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Summary: How to pass from L to H.



1. Define conjugate momenta:

oL
Pv= 9"

2. Solve this for ¢ = ¢"(p, q).

3. Form the Hamiltonian function:

H(p, q) = (PVQV - L(Qa q))

@v=4"(p,q)

Action in Hamiltonian formulation:
A= / dt (p.g” — H(p, q))

Equations of motion: Hamilton’s equations.
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Example of determining H(p, q):
1. y
L(g:d) =5 " Tu(a) 4" = V(q)
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In matrix notation p="Tgq.

Gg=T"'p or ¢*=(T"H"p,
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More common way to derive Halmilton’s equations:

Legendre transformation

Form H(q,q,p)=pq—L(q, q).
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Remark: cyclic variables are easier to eliminate in the Hamiltonian formulation. Assume ¢! is
cyclic: H=H(p1,..., Pn; ¢% ..., q")

OH

= p1= o =0, pj;=-constant

H (constant, p, ..., Pn; ¢° ..., ¢"). Modification of L has already been performed when going to
H.

Remark: In the Lagrangian formulation the position of the system is given by coordinates ¢”.
One regards the system as a point moving in configuration space. (The configuration space is
the n dimensional manifold on which the system moves; ¢ are the coordinates on this mani-
fold.) To describe the state of a system, you must give all coordinates and velocities. 2n real
numbers. Here n is the number of degrees of freedom of the system.

In the Hamiltonian formulation the system is a point in phase space. (The phase space is a 2n
dimensional space with coordinates p, and ¢”.) The position in phase space determines the state
of the system. Hamilton’s equations of motion then determine uniquely the future motion. The
equations determine a flow in phase space.

Liouville’s theorem: “The phase fluid is incompressible.” If one picks a region 2 of phase space, it
moves in such a way that its volume is time independent.

Proof: Consider first an incompressible fluid in three dimensions.
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Q(t+dt)

Conclusion: Incompressible fluid <V - v =0.

In phase space:
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Remark: Liouville’s theorem is one of many. There is one integral invariant for each number

1 2n.

gaeny

Note: Phase space (coordinates p, ¢) has dimension 2n. There is also an extended phase space,
with dimension 2n 4+ 1 (¢ is added as an extra coordinate) and an extended phase space of
dimension 2n 4 2 to which ¢ and p; are added.



