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[This time only Swedish people turned up, so the lecture was, initialy, held in Swedish.]

Hamiltons ekvationer

Ej bättre för att lösa ingenjörsproblem. Better for understanding general properties of mech-
anics.

Goal: Put time derivative terms in the action in a simple form.

In L: T =
1

2
q̇νTµν(q)q̇

ν� 1

2
q̇µδµνq̇

ν.

Better option: linearize the action in time derivatives.

A1=

∫

dt L(q, q̇) (1)

Introduce the new variable vµ= q̇ν. q̇ν − vµ=0 is implemented by Lagrange multiplier pµ:

≃A2=

∫

dt (L(q, q̇) + pν(q̇
ν − vν)) (2)

≃A3=

∫

dt (pν q̇
ν − (pνvν −L(q, v))) (3)

δA3

δv
=0: pv −

∂L

∂vν
=0

solve for v and insert back in to the action.

≃ A4=

∫

dt (pν q̇
ν −H(p, q))

H(p, q)= (pν v
ν −L(q, v))|v=v(p,q)

(2)

δq:
∂L

∂qν
−

d

dt

∂L

∂q̇ν
− ṗν =0

δp: q̇ν − vν =0

δv: pν =0

(3)

δq:
∂L

∂qν
− ṗν =0

δp: q̇ν − vν =0

δv:
∂L

∂vν
− pν =0, pν has increased by

∂L

∂vν

Summary: How to pass from L to H .
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1. Define conjugate momenta:

pν =
∂L

∂q̇ν

2. Solve this for q̇ν = q̇ν(p, q).

3. Form the Hamiltonian function:

H(p, q) = (pνq̇
ν −L(q, q̇))

∣

∣

∣

∣

q̇ν= q̇ν(p,q)

Action in Hamiltonian formulation:

A=

∫

dt (pνq̇
ν −H(p, q))

Equations of motion: Hamilton’s equations.







ṗν = −
∂H

∂qν

q̇ν =
∂H

∂pν

Example of determining H(p, q):

L(q, q̇)=
1

2
q̇µ Tµν(q) q̇

ν −V (q)

pµ=
∂L

∂q̇ν
=Tµν(q)q̇

ν

In matrix notation p=Tq̇ .

q̇ =T−1 p or q̇µ=(T−1)µν pν

H = [=p q̇ −L= pνq̇
ν −

1

2
pνq̇

ν +V =]=
1

2
pµ(T

−1)µνpν +V (q)

More common way to derive Halmilton’s equations:

Legendre transformation

Form H(q, q̇ , p)≡ p q̇ −L(q, q̇).

δH = δp q̇ + δq̇

(

p−
∂L

∂q̇

)�
=0 by def. of p

− δq
∂L

∂q
=

[

∂L

∂q
=

d

dt

∂L

∂q̇
= ṗ

]

= δp q̇ − δq ṗ

⇒















q̇ =
∂H

∂p

∣

∣

∣

q

ṗ = −
∂H

∂q

∣

∣

∣

p







ṗν = −
∂H

∂qν

q̇ν =
∂H

∂pν
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Remark: cyclic variables are easier to eliminate in the Hamiltonian formulation. Assume q1 is
cyclic: H =H(p1,	 , pn; q

2,	 , qn)

⇒ ṗ1=−
∂H

∂q ′
=0, p1= constant

H(constant, p2, 	 , pn; q
2, 	 , qn). Modification of L has already been performed when going to

H .

Remark: In the Lagrangian formulation the position of the system is given by coordinates qν.
One regards the system as a point moving in configuration space. (The configuration space is
the n dimensional manifold on which the system moves; qν are the coordinates on this mani-
fold.) To describe the state of a system, you must give all coordinates and velocities. 2n real
numbers. Here n is the number of degrees of freedom of the system.

In the Hamiltonian formulation the system is a point in phase space. (The phase space is a 2n
dimensional space with coordinates pν and qν.) The position in phase space determines the state
of the system. Hamilton’s equations of motion then determine uniquely the future motion. The
equations determine a flow in phase space.

Liouville’s theorem: “The phase fluid is incompressible.” If one picks a region Ω of phase space, it
moves in such a way that its volume is time independent.

Proof: Consider first an incompressible fluid in three dimensions.

V =

∫

Ω

d3x=

dV =V (t+dt)−V (t)=

∫

Ω(t+dt)

d3x−

∫

Ω

d3x=

∫

∂Ω

dtv · dS= [Gauss] = dt

∫

Ω

dV (∇ ·v)

Conclusion: Incompressible fluid ⇔∇·v=0.

In phase space:

v=(ṗ1,	 , ṗn; q̇1,	 , q̇n)=

(

−
∂H

∂q1
,	 ,−

∂H

∂qn
;
∂H

∂p1
,	 ,

∂H

∂pn

)

∇ ·v=
∂ṗ1
∂p1

+
 =−
∂2H

∂p1∂q1
−
 −

∂2H

∂pn∂qn
+

∂2H

∂q1∂p1
+
 +

∂2H

∂qn∂pn
=0

Remark: Liouville’s theorem is one of many. There is one integral invariant for each number
1,	 , 2n.

Note: Phase space (coordinates p, q) has dimension 2n. There is also an extended phase space,
with dimension 2n + 1 (t is added as an extra coordinate) and an extended phase space of
dimension 2n+2 to which t and pt are added.
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